- методы оценки
-
3.7.18 методы оценки: Методы в контексте улучшения и оценки результативности проекта, относящиеся к цели, которые могут быть формативными (в процессе выполнения проекта), обобщающими (на этапе завершения проекта), качественными или количественными.
Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документаСмотри также родственные термины:
6.5 Методы оценки габаритов и параметров зоны аварийного воздействия
6.5.1 Оценка габаритов и параметров аварийного воздействия при авариях, связанных с прорывом напорного фронта, согласно методике определения размера вреда [4] должна выполняться методами численного моделирования с применением сертифицированных надзорными органами программных комплексов, дающих возможность прогнозировать глубины и скорости движения потока в местах расположения объектов народного хозяйства.
6.5.2 В расчетах, как правило, следует использовать одномерные или двумерные (плановые) уравнения мелкой воды (Сен-Венана), решаемые численно. Для расчета протяженных участков возможно применение одномерных уравнений Сен-Венана с пересчетом поля скоростей на двумерную область. В случаях речных долин с широкими поймами и руслами, существенно отличными от прямолинейных, в расчете необходимо учитывать взаимовлияние потоков на поймах и в русле.
6.5.3 Точность прогнозирования вероятного вреда напрямую связана с точностью определения гидродинамических параметров волны прорыва, которая определяется:
- выбором сценария (сценариев) разрушения ГТС;
- точностью расчета волны отлива (осушения) в верхнем бьефе;
- точностью расчета распространения волны прорыва в нижнем бьефе.
6.5.4 Все типы сценариев аварии ГТС гидроэлектростанций, независимо от вида ГТС, следует разбивать на две группы:
- аварии ГТС, связанные с нарушением напорного фронта, сопровождающиеся образованием прорана, через который происходит неконтролируемый излив воды, формированием волны прорыва и зоны катастрофического затопления, в условиях отсутствия ледового покрова или при его наличии;
- аварии ГТС, связанные с повреждением отдельных их элементов, приводящие к необходимости аварийного снижения напора на ГТС, сопровождающиеся контролируемым сбросом воды с расходом, величина которого превышает максимальный расчетный, формированием волны излива и зоны катастрофического затопления, в условиях отсутствия ледового покрова или при его наличии.
6.5.5 Для территории аварийного воздействия в нижнем бьефе ГТС, по результатам численных расчетов волны прорыва, на топографической карте местности заданного масштаба (определяется размерами ГТС и площадью затапливаемых территорий), вплоть до створа, в котором максимальный за время наводнения расход не превосходит расход обеспеченностью 5 процентов, должны быть нанесены в изолиниях (цветовой заливке) следующие параметры:
- границы зоны затопления территории в нижнем бьефе при аварии ГТС и при проектном пропуске максимального расчетного паводка;
- максимальные значения глубины и скорости потока в зоне катастрофического затопления;
- время от начала аварии (нарушения напорного фронта) до прихода прорывной волны в данную точку местности (время добегания);
- продолжительность затопления территории в нижнем бьефе;
- показатели воздействия плавающего льда на объекты, расположенные на территории нижнего бьефа ГТС;
- объем выноса материалов из заиленного водохранилища и области отложений этих материалов на территории нижнего бьефа ГТС.
6.5.6 По результатам расчета определяются основные составляющие ущерба на территории нижнего бьефа ГТС, связанные с параметрами волны прорыва:
- степень разрушения зданий и сооружений;
- глубина и время затопления территории (для сельскохозяйственных и экологических ущербов);
- время добегания волны прорыва до того или иного населенного пункта (для оценки возможных людских потерь);
- зоны возможного отложения наносов, вынесенных из заиленного водохранилища.
6.5.7 Для территории аварийного воздействия в верхнем бьефе ГТС, по результатам численных расчетов, моделирующих излив воды из водохранилища, на топографической карте местности заданного масштаба (определяется размерами ГТС и площадью водохранилища) должны быть нанесены в изолиниях (цветовой заливке) следующие параметры:
- график изменения уровня воды в верхнем бьефе во времени в ходе излива воды из водохранилища;
- распределение скоростей в водохранилище в характерные моменты времени излива;
- зоны возможного размыва наносов и график изменения во времени объема их выноса.
6.5.8 По результатам расчета определяются основные составляющие ущерба на территории верхнего бьефа ГТС, связанные с интенсивностью и степенью опорожнения водохранилища:
- степень разрушения зданий и сооружений,
- степень снижения уровня воды в водохранилище и уровня грунтовых вод на прилегающей к водохранилищу территории;
- степень опорожнения водохранилища.
Определения термина из разных документов: Методы оценки габаритов и параметров зоны аварийного воздействия5.5. Методы оценки функционирования вставки
5.5.1. Определение мРНК, продуцируемой вставкой, которая введена в геном растения с помощью гнездовой ПЦР.
Выделение препаратов суммарной мРНК из образцов продукта гуанидин-тиоцианат-фенол-хлороформным методом [125] и проведение последующих гнездовых ПЦР с декларированными праймерами [126, 125]. Детектирование синтезированных кДНК электрофорезом в полиакриламидном геле с окрашиванием этидиум бромидом [126].
5.5.2. Двумерный электрофоретический анализ белков.
В работе используются следующие реактивы: акриламид, метилен-бисакриламид, агароза, трис, глицин, додецилсульфат натрия, персульфат аммония, тритон Х-100, дитиотриэтол, Амберлит МВ-1, 2-меркаптоэтанол, кумасси бриллиантовый голубой R-250, кумасси бриллиантовый голубой G-250, Tween-20, 4-хлор-1-нафтол, бычий сывороточный альбумин - фирмы «Serva» (Германия); ТВИН-20 - фирмы «Merk» (Германия) амфолины рН 3 - 10, рН 5 - 7, рН 5 - 8, фирмы «LKB» (Швеция).
В качестве расходных материалов применяются также: нитроцеллюлозные фильтры - фирмы «Schleicher and Schull» (Германия).
Белковые экстракты из всех изучающихся биологических материалов готовят сходным образом, используя для обеспечения максимальной солюбилизации белков лизирующий раствор (ЛР), с высоким содержанием денатурирующих агентов - мочевины, меркаптоэтанола (дитиотриэтола), и тритона Х-100. ЛР - раствор 9 М мочевины, содержащий 5 % 2-меркаптоэтанола, 2 % тритон Х-100, 2 % амфолины 3,5-10.
При приготовлении ЛР сначала мочевину растворяют в деионизованной воде и дополнительно очищают добавлением Амберлит МВ-1. После 10 мин инкубации амберлит отделяют, и к раствору мочевины добавляют Тритон Х-100, дитиотриэтол (или 2-меркаптоэтанол), амфолины рН 3 - 10 до указанных концентраций.
При экстракции белков образцы тканей измельчают ножницами и несколько раз промывают холодным физиологическим раствором. Затем измельченную ткань гомогенизируют в стеклянном гомогенизаторе с тефлоновым пестиком в ЛР в соотношении 100 мг ткани на 2 мл ЛР и центрифугируют при 700g в течение 10 мин. Надосадочную фракцию, содержащую солюбилизированные белки (экстракт), используют для дальнейшей работы.
Для анализа белков используют двумерный электрофорез по О'Фарреллу - метод, сочетающий фракционирование белков изоэлектрофокусированием (первое направление) с гель-электрофорезом в присутствии SDS [128, 129].
Изоэлектрофокусирование проводят в стеклянных трубках длиной 150 мм и внутренним диаметром 3,5 мм. Трубки устанавливают в штатив, герметизируют нижние отверстия пленкой Parafilm и заливают полимеризационной смесью. Для составления полимеризационной смеси готовят следующие реактивы:
1.1. 30 %-ный акриламид, 1,6 % метиленбисакриламид;
1.2. 20 %-ный тритон Х-100;
1.3. 10 %-ный персульфат аммония;
1.4. Анодный буфер для изоэлектрофокусирования: 0,01 М фосфорная кислота;
1.5. Катодный буфер для изоэлектрофокусирования: 0,02 М NaOH;
1.6. Защитный раствор: 4,5 М раствор мочевины, содержащий 1 % Тритона Х-100; 2,5 % меркаптоэтанола, 1 % амфолинов рН 3,5 - 10.
1.7. Переводный буфер для геля первого направления - белковый буфер (см. п. 2.2.).
Растворы 1.1; 1.2; 1.6; 1.7 хранят при температуре 4 °С в течение 2 - 3 недель. Остальные используют свежеприготовленными.
Приготовление 20 мл полимеризационной смеси, необходимой для заполнения 12 трубок, осуществляют, смешивая 12 г мочевины, 6,75 мл дистиллированной воды, 3 мл раствора 1.1, 2,25 мл раствора Тритона Х-100 (20 %). Эту смесь обрабатывают ионообменной смолой амберлит МБ-1, отфильтровывают и добавляют к ней 225 мкл амфолинов рН 3,5 - 10 и 900 мкл амфолинов рН 5 - 7. Смесь дегазируют, а непосредственно перед заливкой в трубки к ней добавляют 22,5 мкл ТЕМЕД и 32,5 мкл 10 %-ного раствора ПСА.
Полимеризационную смесь в трубки вносят шприцем, заполняя трубки снизу вверх до одного уровня - на 2 - 3 см ниже верхнего края (высота колонки геля 11 см). Сверху наслаивают воду.
После окончания полимеризации геля воду над его поверхностью удаляют и трубки устанавливают в гельэлектрофоретическую камеру «Bio-Red», модель 175 (США). В нижний резервуар камеры наливают раствор катодный буфер. В трубки наносят анализируемые образцы, в объеме 50 - 150 мкл (100 мкг белка). В полупрепаративном варианте фракционирования объем наносимого образца увеличивают до 250 - 350 мкл. Сверху, по краям трубки, наслаивают защитный раствор 1.7 и верхнюю камеру прибора заполняют анодным буфером.
Изоэлектрофокусирование до равновесного состояния проводят при напряжении, начиная с 400 В до 200 В×ч, и затем при напряжении 1000 В до суммарного значения 5400 В×ч, или (ночной режим), при напряжении 210 В двадцать часов и затем один час 1000 В до того же суммарного значения 5400 В×ч. Неравновесный вариант изоэлектрофокусирования проводят при напряжении, начиная с 400 В до 200 В×ч, и затем при напряжении 1000 В×ч до суммарного значения 1000 - 2500 В×ч.
По окончании изоэлектрофокусирования колонки геля вымачивают в 5 мл переводного буфера (раствор 1.7) 10 мин при комнатной температуре. Затем гели, не предназначенные для немедленного фракционирования во втором направлении, быстро замораживают и хранят при температуре -20 °С до нескольких недель.
Для фракционирования во втором направлении используют модифицированный метод Леммли [130] в пластинах с градиентом ПААГ 7,5 - 25 % в присутствии SDS.
Для этой цели готовят следующие растворы, из которых затем составляют полимеризационные смеси для формирования пластин ПААГ:
2.1. 60 %-ный акриламид, 0,8 %-ный метиленбисакриламид;
2.2. Буфер для разделяющего геля: 1 М Трис-HCl (рН 8,8);
2.3. Буфер для концентрирующего геля: 0,5 М Трис-HCl (рН 6,8);
2.4. 10 %-ный додецилсульфат натрия;
2.5. 10 %-ный персульфат аммония;
2.6. Электродный буфер для электрофореза: 0,025 М Трис, 0,192 М глицин, 0,1 %-ный SDS (рН 8,3);
2.7. Агарозный гель: 1 % агароза в растворе 2.6 с добавлением 0,125 % бромфенолового синего. После приготовления раствор необходимо прокипятить в течение 5 мин, а перед каждым использованием гель необходимо растопить.
Раствор 2.5 готовят непосредственно перед употреблением, остальные хранят при температуре 4 °С.
Фракционирование во втором направлении осуществляют в пластинах ПААГ размером 160´160´1 мм с линейным градиентом концентрации акриламида 7,5 - 25 %, в приборе для вертикального электрофореза. Пластины геля готовят в стандартных стеклянных кассетах. Пример с подробным описанием использования этого оборудования опубликован ранее [131].
Обычно для параллельного формирования 6 гелевых пластин с градиентом концентрации акриламида (разделяющий гель) готовят 2 раствора: легкий (концентрация АА 7,5 %) и тяжелый (концентрация АА 25 %), по 100 мл каждого. Полный состав этих растворов приведен в таблице.
Таблица
Определения термина из разных документов: Методы оценки функционирования вставки
Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.